The Crystal Structure of CsIBr_{2}

By J. E. Davies and E. K. Nunn*
(Department of Chemistry, Monash University, Clayton, Victoria, Australia, 3168)

Summary The anion ($\mathrm{Br}-\mathrm{I}-\mathrm{Br}$)- in CsIBr_{2} is not symmetrical, the longer $\mathrm{I}-\mathrm{Br}$ bond being $2.78 \AA$ long.

The crystal structure of CsIBr_{2} has been investigated to determine the dimensions of the IBr_{2}^{-}anion and to compare it with the structures of $\mathrm{CsI}_{3}, \mathrm{CsBr}_{3}$, and $\mathrm{CsI}_{2} \mathrm{Br}$ which have been reported previously. ${ }^{1}$ These four caesium trihalides are isostructural. ${ }^{2}$

Crystal data: CsIBr_{2}; orthorhombic, space group Pnma;

Figure. The structure of CsIBr_{2} projected on to the ac plane. The shaded atoms lie at $\mathrm{y}=\frac{1}{4}$, the outlined ones at $\mathrm{y}=-\frac{1}{4}$ or $\frac{3}{4}$. In order of increasing size the atoms are respectively $\mathrm{Cs}, \mathrm{Br}, \mathrm{I}$.
$a=10.72 \pm 0.02 ; \quad b=6.61 \pm 0.02 ; \quad c=9.23 \pm 0.02 \AA ;$ $Z=4 ; \quad D_{\mathrm{m}}=4.29 \mathrm{~g} \cdot \mathrm{~cm} .^{-3}, 3 \quad D_{\mathrm{c}}=4.26 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. All atoms lie on the mirror planes at $y=\frac{1}{4}, \frac{3}{4}$. A total of 243 independent reflections were visually estimated from equiinclination Weissenberg photographs taken about the b-axis with $\mathrm{Cu}-K_{\alpha}$ radiation.

The structure determination was carried out by threedimensional Fourier methods. Full-matrix least-squares refinement of the structure with individual anisotropic temperature factors has reduced the reliability index to a present value of $0 \cdot 100$ and the final difference synthesis shows no peaks or holes greater than $2 \mathrm{e}^{\AA^{-3}}$.

The anion is ($\mathrm{Br}-\mathrm{I}-\mathrm{Br})^{-}$and is not symmetrical, which is in accord with the reported geometries of CsI_{3} and CsBr_{3}.

Bond lengths and angles in caesium trihalides $\mathrm{X}(1)-\mathrm{X}(\mathbf{2})-\mathrm{X}(\mathbf{3})$

	$\mathrm{X}(1)-\mathrm{X}(2) \AA$	$\mathrm{X}(2)-\mathrm{X}(3) \AA$	$\angle \mathrm{X}(1)-\mathrm{X}(2)-\mathrm{X}(3)$
CsI_{3}	3.03	2.83	176.0°
CsBr_{3}	2.70	2.44	177.5°
$\mathrm{CsI}_{2} \mathrm{Br}$	2.906	2.777	178.0°
CsIBr_{2}	2.78	2.62	178.0°

The longer $\mathrm{I}-\mathrm{Br}$ bond ($\mathbf{2} .78 \AA$) is considerably shorter than the $\mathrm{I}-\mathrm{Br}$ bond in $\mathrm{CsI}_{2} \mathrm{Br}(2 \cdot 906 \AA)$. Both $\mathrm{I}-\mathrm{Br}$ bonds are, however, longer than the observed bond length in gaseous $\operatorname{IBr}(2 \cdot 485 \AA) .{ }^{4}$ This would suggest a distortion of the anion due to the other ions within the crystal. ${ }^{5}$
(Received, August 28th, 1969; Com. 1322.)
${ }^{1}$ R. L. C. Mooney, Z. Krist., 1935, 90, 143; H. A. Tasman and K. H. Boswijk, Acta Cryst., 1955, 8, 59; G. B. Carpenter, ibid., 1966, 20, 330; G. L. Breneman and R. D. Willet, ibid., 1969, B, 25, 1073.
${ }^{2}$ H. L. Wells and S. L. Penfield, Z. anorg. Chem., 1892, 1, 85.
${ }^{3}$ R. M. Bozorth and L. Pauling, J. Amer. Chem. Soc., 1925, 47, 1561.
${ }^{4}$ T. S. Jaseja, J. Mol. Spectroscopy, 1960, 5, 445.
${ }^{5}$ R. D. Brown and E. K. Nunn, Austral. J. Chem., 1966, 19, 1567 ; E. H. Wiebenga and D. Kracht, Inorg. Chem., $1969,8,738$.

