The Crystal Structure of CsIBr₂

By J. E. DAVIES and E. K. NUNN*

(Department of Chemistry, Monash University, Clayton, Victoria, Australia, 3168)

Summary The anion (Br-I-Br)- in CsIBr₂ is not symmetrical, the longer I-Br bond being 2.78 Å long.

THE crystal structure of CsIBr, has been investigated to determine the dimensions of the IBr₂ anion and to compare it with the structures of CsI₃, CsBr₃, and CsI₂Br which have been reported previously.1 These four caesium trihalides are isostructural.2

Crystal data: CsIBr₂; orthorhombic, space group Pnma;

FIGURE. The structure of CsIBr₂ projected on to the ac plane. The shaded atoms lie at $y = \frac{1}{4}$, the outlined ones at $y = -\frac{1}{4}$ or $\frac{3}{4}$. In order of increasing size the atoms are respectively Cs, Br, I.

 $a = 10.72 \pm 0.02$; $b = 6.61 \pm 0.02$; $c = 9.23 \pm 0.02$ Å; Z = 4; $D_{\rm m} = 4.29$ g. cm.⁻³,³ $D_{\rm c} = 4.26$ g. cm.⁻³. All atoms lie on the mirror planes at $\gamma = \frac{1}{4}, \frac{3}{4}$. A total of 243 independent reflections were visually estimated from equiinclination Weissenberg photographs taken about the b-axis with $\operatorname{Cu}-K_{\alpha}$ radiation.

The structure determination was carried out by threedimensional Fourier methods. Full-matrix least-squares refinement of the structure with individual anisotropic temperature factors has reduced the reliability index to a present value of 0.100 and the final difference synthesis shows no peaks or holes greater than 2 $eÅ^{-3}$.

The anion is $(Br-I-Br)^-$ and is not symmetrical, which is in accord with the reported geometries of CsI₃ and CsBr₃.

Bond length	s and angles in	caesium trihali	ides $X(1)-X(2)-X(3)$
	X(1)-X(2) Å	X(2)-X(3) Å	$\angle X(1)-X(2)-X(3)$
CsI,	3.03	2.83	176·0°
CsBr _a	2.70	$2 \cdot 44$	177.5°
CsI,Br	2.906	2.777	178·0°
$CsIBr_2$	2.78	2.62	178·0°

The longer I-Br bond (2.78 Å) is considerably shorter than the I-Br bond in CsI₂Br (2.906 Å). Both I-Br bonds are, however, longer than the observed bond length in gaseous IBr (2.485 Å).⁴ This would suggest a distortion of the anion due to the other ions within the crystal.⁵

(Received, August 28th, 1969; Com. 1322.)

¹ R. L. C. Mooney, Z. Krist., 1935, 90, 143; H. A. Tasman and K. H. Boswijk, Acta Cryst., 1955, 8, 59; G. B. Carpenter, *ibid.*, 1966, 20, 330; G. L. Breneman and R. D. Willet, *ibid.*, 1969, B, 25, 1073. ² H. L. Wells and S. L. Penfield, Z. anorg. Chem., 1892, 1, 85.

³ R. M. Bozorth and L. Pauling, J. Amer. Chem. Soc., 1925, 47, 1561.
⁴ T. S. Jaseja, J. Mol. Spectroscopy, 1960, 5, 445.
⁵ R. D. Brown and E. K. Nunn, Austral. J. Chem., 1966, 19, 1567; E. H. Wiebenga and D. Kracht, Inorg. Chem., 1969, 8, 738.